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Abstract
In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a
rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints
and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract
large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated
and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

Keywords Adaptive control · Satellite attitude control · Multiple model

1 Introduction

Satellites have such a significant role in today’s life that we
almost cannot imagine our everyday life without satellites
services. The mission of a satellite and a space project, in
general, relies on its payload and the performance of most of
common payloads in space projects is tightly related to the
performance of the attitude control system (ACS). The ACS
is responsible for reorienting the spacecraft to achieve desired
orientation or attitude and counteract various disturbances
present in the space environment.

Taking into account some demanding applications such as
stereo imaging the need for ACSs of a higher performance
is evident. In this regard, this work focuses on improving
the transient response of ACS of a LEO satellite subjected
to uncertainty in mass properties. This kind of uncertainty
is usual in satellites because of various facts including fuel
consumption and deployable or sun-tracking solar arrays.

The attitude control problem is also of great interest
in areas other than space projects such as aerial vehicles,
robotics systems and submarine vehicles. There have been
vast amounts of research dealing with various aspects of this
problem during past few decades. An example of a com-
prehensive reference on spacecraft attitude control could be
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Ref. [1], while an analytical treatment to the subject can be
found inRef. [2], andRef. [3] is an application oriented book.
An in-depth treatment of attitude determination is given in
Ref. [4]. This reference covers fundamental concepts and
mathematical basis for spacecraft attitude determination and
control and develops them to practical algorithms. A detailed
list of references through 1991 is given by Wen [5]. In this
reference, a feature inherent in quaternion for describing
the configuration space of rigid body attitude motion that
is double covering of the attitude space was pointed out. The
consequent problems of this feature are the so-called unwind-
ing phenomenon, the impossibility of globally stabilizing the
attitude using a continuous controller which led to the intro-
duction of “almost” global stability notion, the need for a path
lifting mechanism and using sort of memory in control law.
To bemore specific, the state space of attitudemotion, SO(3),
which is the set of all orthogonal 3 × 3 matrices with unit
determinant, is a boundaryless compact manifold and is not
a vector space. On the other hand quaternion representation
of attitude is the set of all vectors in �4 with unit magnitude
and it double covers the set SO(3). These problems are now
well understood and reported in Refs. [6,7] among others.

The problem of stabilizing spacecraft attitude has been
considered for a long time by many researchers and there are
a variety of proposed techniques such as Refs. [8,9] to cite
mainworks. In theseworks, a PD-like controller with a linear
structure is used. The proportional term includes a measure
of attitude error [5], while the derivative term uses angu-
lar velocity for damping purposes. Various output feedback
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controllers have been also proposed; in contrast to Ref. [10]
which uses dynamic observer to establish output feedback,
Lizarralde proposed a passivity-based lead filter to generate
pseudo-velocities to be used in control law [11]. This scheme
which thereafterwas also incorporated inmanyworks such as
Refs. [12,13], though this approach eliminates the direct use
of angular velocity in control law; as there does not exist any
device to measure the attitude directly, the need for angular
velocity measurement might not be eliminated. A finite time
state observer together with a finite time control law in terms
ofMRPs has been proposed inRef. [14] that constitute a finite
time output feedback attitude control scheme. This scheme
is also applicable to a more general class of second-order
nonlinear systems. The stability analysis for both observer
and control law is also presented. Nonlinear control tech-
niques including Refs. [15–17] have been used successfully
in the context of attitude control. Robust control has been
also exploited in Refs. [15,18] to treat uncertainty in inertia
matrix, actuators misalignment, and different disturbances.

Adaptive attitude control seems to have great potential
for satisfying spacecraft attitude control problem require-
ments. A wide class of adaptive control schemes has been
proposed. In Ref. [19], an adaptive trajectory tracking con-
troller is presented for a large class of nonlinear mechanical
systems especially the rigid body attitude control problem.
The response of closed loop system in this approach con-
verges asymptotically to a specified linear PID response. An
adaptive attitude controller subject to constraints on angular
velocity is proposed in Ref. [20]. In this control law the con-
straints on angular velocity components are explicitly used
in the controller formulation. In Ref. [21] a model reference
adaptive controller is developed for spacecraft rendezvous
and docking problem. In this work a passivity based lead
filter similar to that of Ref. [12] is used to achieve output
feedback control. In Ref. [22] an adaptive attitude controller
with finite-time convergence which uses a nonsingular ter-
minal sliding surface is developed. Two robust adaptive finite
time control laws using back-stepping method are presented
in Ref. [23] which are robust against external disturbances.
In this work rotation matrix is incorporated for describing
the attitude of the rigid spacecraft to avoid pitfalls associated
with other coordinates which are singular and/or non-unique.

All of the above-mentioned adaptive controllers are based
on certainty-equivalence principle; in turn, they consider a
deterministic control law and combine it with an appropriate
parameter adaptation law to achieve an adaptive control law.
The resulting closed loop system is nonlinear time-varying
and due to parameter adaptation apart from the actual values
has inferior performance to the deterministic case. To com-
pensate for this imperfection, authors in Ref. [24] recover
the performance of deterministic closed loop system by
including a stable attracting manifold in adaptation scheme.
Another popular and more general solution to overcome the

drawbacks of classical adaptive control which we adopted
in this work is the multiple model and switching approach.
In classical adaptive control, the plant is supposed to have
unknown constant parameters and because of this in the case
of abrupt change or large uncertainty in the parameters, clas-
sical adaptive control leads to a poor performance especially
from a transient response point of view. As a solution to these
problems, multiple model and switching approach attracted
interests from the early ages of adaptive control. Implemen-
tation of this approach is presented by Maybeck [25] for
the aircraft flight control problem. Multiple model adaptive
control with switching and tuning with stability proof for
special cases is introduced in Ref. [26]. Fekri [27] tries to
give a methodology for designing multiple model adaptive
controllers that guarantee a superior performance and sta-
bility properties in comparison with the best non-adaptive
controllers. They have introduced the notion of robust mul-
tiple model adaptive control (RMMAC) where its stability
is addressed by Hassani [28]. A weighted multiple model
control for a discrete time linear plant with stability proof
is proposed in Ref. [29] which guarantees the convergence
of the weight of the closest model to the plant to 1 and the
others to 0.

The proposed method in this paper is adopted from Ref.
[30] which uses smaller number of models and provides an
estimate of the plant parameter which depends on the col-
lective outputs of all the models. Our focus in this paper is
on attitude control under angular velocity constraints, since
in spite of its practical applications there is much lower
works on it than other problems in attitude control. Angu-
lar velocity constraints may have occurred in the cases such
as low-rate gyros, in-flight refueling, and spacecraft dock-
ing. In Ref. [31], an integrator back-stepping technique for
a dynamical system under angular velocity constraint is pro-
posed and a Lyapunov function including a logarithmic term
is introduced to deal with angular velocity bounds. Jianbo
[32] introduced a nonlinear controller with actuator and slew
rate saturation. A robust nonlinear control, again using the
Lyapunov function including logarithmic term,was proposed
by Hu [18]. The control law in this work uses feedback lin-
earization to cancel gyroscopic term in attitude dynamics
which is not new in attitude control and might not be desir-
able.

The contribution of this work is threefold. First, almost
global asymptotic stability of a control law for attitude con-
trol under angular velocity constrains is rigorously proved.
Second, the output feedback variant of this control law is
presented and third, the transient response of the proposed
control law is significantly improved exploiting multiple
model approach.

This paper is organized as follows. In Sect. 2 the mathe-
matical model of spacecraft attitude is stated. The proposed
multiplemodel adaptive attitude control is presented in Sects.
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3 and 4 describes the LEO satellite simulator used to evaluate
the proposed controller and simulation results are presented
therein. Finally, we conclude the paper in Sect. 5 and some
future study issues are stated.

2 Mathematical Model of Spacecraft Attitude

In this section, the mathematical model of a rigid spacecraft
is introduced. This model consists of spacecraft dynamics
and its kinematics equation. Dynamics equation is described
by the well-known Euler’s moment equation and it con-
cerns the act of torques on the rigid body rotational motion.
Kinematics equation describes relationship between veloc-
ity and position-related quantities (attitude in rotational
motion) regardless of torques acting on the body. While
there are many representations for the attitude of a rigid
body such as Euler angles, Rodrigues parameters, and modi-
fied Rodrigues parameters (MRPs); quaternions (also called
Euler symmetric parameters) are most common since they
are singularity-free and lead to a linear kinematics equation.

The quaternion vector representing the attitude of body
frame with respect to inertial frame is introduced as

q =
[
q1:3
q4

]
(1)

where q1:3 is the vector part and q4 is the scalar part of the
quaternion vector. Kinematics of a rigid body is given by the
following equation [4]:

q̇ = 1

2
�(ω)q (2)

where ω is the angular velocity of body frame with respect
to inertial frame expressed in the body frame and

�(ω) =

⎡
⎢⎢⎣
0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎤
⎥⎥⎦ . (3)

Euler’s moment equation gives the nonlinear three-axis
dynamics equation of a rigid body as

Iω̇ = −ω × Iω + u (4)

where I ∈ �3×3 is the symmetric positive definite inertia
matrix of the rigid body, u ∈ �3 is the control input, and ×
denotes cross product operation.

3 Multiple Model Adaptive Attitude
Controller

In this section, the proposed multiple model adaptive out-
put feedback attitude control scheme is described. First, a
modified variant of adaptive control law presented in Ref.
[20], which explicitly takes into account angular velocity
bounds, is introduced. Then the need for direct angular veloc-
ity measurement is eliminated using passivity-based lead
filter, and utilizing the resulting control law as a core con-
troller to improve its transient response using multiple model
and switching approach to adaptive control.

Letq be the instantaneous attitude quaternion of the space-
craft and q̄ be the desired attitude quaternion. The attitude
error in terms of quaternion is defined as [4],

δq ≡
[

δq1:3
δq4

]
= q ⊗ q̄−1 = [

Ξ(q̄−1) q̄−1
]
q (5)

where,

Ξ(q̄−1) =

⎡
⎢⎢⎣
q̄4 q̄3 −q̄2
−q̄3 q̄4 q̄1
q̄2 −q̄1 q̄4
q̄1 q̄2 q̄3

⎤
⎥⎥⎦ . (6)

Let the constraints on angular velocity components in rad/sec
be described as follows

|ω1(t)| ≤ k1, |ω2(t)| ≤ k2, |ω3(t)| ≤ k3 (7)

The main adaptive output feedback control law is proposed
as

u = −ÎK
−1
v (δq1:3 + k5v), (8)

where, v = [
v1 v2 v3

]T
is the synthesized angular velocity

to be introduced later, and

Kv =

⎡
⎢⎢⎣

k4
k21−v21

0 0

0 k4
k22−v22

0

0 0 k4
k23−v23

⎤
⎥⎥⎦ (9)

and Î is the estimated value of inertia matrix I. Let J = I−1,
�Ĵ − J and define

� := [
�J11 �J12 �J13 �J22 �J23 �J33

]T
(10)

then, adaptation law for I is introduced as

ˆ̇I = −Î ˙̂JÎ (11)
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and

�̇ = −�MT ÎK−1
v (δq1:3 + K5V) (12)

where,

M =
⎡
⎣ y1 y2 y3 0 0 0
0 y1 0 y2 y3 0
0 0 y1 0 y2 y3

⎤
⎦ (13)

where,

y = [
y1 y2 y3

]T = Kvv (14)

For a discussion on the convergence of the Eq. (12) the reader
may refer to Ref. [20] among other references.

One advantage of control law (8) lies in the fact that it is an
output feedback control law, i.e. there is no need to measure
angular velocity of the rigid spacecraft and this is achieved by
using the synthesized angular velocity instead of measured
angular velocity. A procedure similar to that presented in
Ref. [11] can be followed to construct synthesized angular
velocity. The synthesized angular velocity is defined as

v = 2Ξ T (δq)z (15)

where, z is obtained by passing δq̇ through an LTI strictly
proper and strictly positive real system C(s)

z = C (s) δq̇ (16)

To design and implement this filter consider a minimal real-
ization of C(s) as

ξ̇ = Aξ + Bδq̇; z = Cξ (17)

Since C(s) is strictly positive real and strictly proper, the
Kalman–Yakubovich–Popov’s Lemma implies that there
exist positive definite matrices P and Q such that

ATP + PA = −Q; PB = CT (18)

and (15) is implementable by choosing any Hurwitz matrix
A, full column rank matrix B and positive definite matrix Q.
Define the state variable ξ1 as ξ̇1 = ξ . Taking the derivative
of both sides of (17) leads to

ξ̇1 = Aξ1 + Bδq

z = Cξ̇1 = BTP(Aξ1 + Bδq) (19)

The above results are summarized in the following theorem
and the rigorous stability analysis is presented.

Theorem 1 The control law (8) almost globally stabilizes the
system described by (2) and (4).

Proof The closed loop system equation can be written as

Iω̇ = − [ω×] Iω − IK−1
v (δq1:3 + k5ω) (20)

and the equilibrium points of this system are

(δq,ω) = ([
δq1:3; δ q4

]
,ω

) = ([0;±1], 0) . (21)

Both of these equilibrium points are associated with one
physical attitude. Consider the Lyapunov function

V = (1 − δ q4)
2 + δqT1:3δq1:3 + 1

2
k4

3∑
i=1

ln
k2i

k2i − ω2
i

> 0

(22)

The first two terms in this Lyapunov function are a measure
of potential energy of the rigid body w.r.t reference attitude
and the logarithmic term was first proposed in Ref. [31] to
treat constraints on the angular velocity and has been also
used in Ref. [18]. Taking time derivative of this Lyapunov
function yields

V̇ = −2
(
1 − δ q4

) ·
δ q4 +2δqT1:3

·
δq1:3 +ωTKωω̇ (23)

by substituting for δq̇ and ω̇, (23) reduces to

V̇ = −k5ω
Tω − ωTKωI−1 [ω×] Iω (24)

for investigating the sign of V̇ , let define

G = KωI−1 [ω×] I (25)

which leads to

V̇ = −k5ω
Tω − ωTGω (26)

Let the upper bound on the Euclidean norm ‖G‖ be known,
then choosing k5 > ||G|| leads to

V̇ ≤ 0. (27)

It means V̇ is negative semi definite and hence the equi-
librium points ([0;±1], 0) are stable. To prove asymptotic
stability, we use Lasalle theorem. As the system is stable it
yields that δq,ω ∈ L∞. Taking integral of both sides of equa-
tion (26) (e.g. for k5 = ||G|| + 1) yields ω ∈ L2 and hence
ω ∈ L∞ ∩ L2. In the other hand from (20), it can be con-
cluded that ω̇ ∈ L∞. Then using Barbalat’s Lemma we have
limt→∞ ω = 0. The equation of closed loop system (20)
shows that limt→∞ ω = 0 only if limt→∞ δq1:3 = 0. Hence
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Fig. 1 Structure of the proposed
multiple model adaptive attitude
controller
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the largest invariant subset in � = {(δq,ω)| ˙V (x) = 0} is
{([δq1:3; δ q4],ω) = ([0; 1], 0)}. So the asymptotic stability
is proved by Lasalle theorem. ��

It should be mentioned that the proposed attitude control
law does not guarantee the shortest path to be travelled. The
stability analysis in Ref. [20] is not rigorous as claimed, e.g.
it is not mentioned whether the controller globally stabilizes
the system or not. This seems to be because of the above-
mentioned ambiguity in stability analysis of control systems
in terms of quaternion coordinate.

The next step is to apply multiple model and switching
approach to the main control law (8). Usually there are two
possibilities for generating model bank in multiple model
adaptive control scheme. First one is generatingmodels based
on system dynamics described in various coordinates or
models obtained by different simplification methods. Sec-
ond possibility is keeping one governing dynamics equation
and establishing models by dividing parameter space of the
plant. In this paper the latter choice is adopted by consider-
ing the parameter space of inertia matrix I ∈ �3×3. Since the
inertia matrix is symmetric, the parameter space is

S =
{
θ ∈ �6

∣∣∣ I 
 0, �i ≤ θi ≤ ui , i = 1, 2, . . . , 6
}

(28)

where the constraints �i ≤ θi ≤ ui , i = 1, 2, . . . , 6 are
known based on a priori knowledge of the inertia matrix
entries. This parameter space can be broken to N subspaces
by considering the N initial choices for the inertia matrix
in main adaptive law. Choosing N depends on the trade-
off between desire performance and controller complexity
made by the designer. The actual inertia matrix and other
initial choices are named as Ip: actual inertia matrix of the
spacecraft; Ii , i = 1, 2, . . . , N : inertia matrix choices with
different amounts of uncertainty corresponding to different
subspaces in S.

The structure of the proposed multiple model adaptive
attitude control is shown in Fig. 1. In this figure N identi-
fication models are constructed by the N initial choices for
inertia matrix using the parameter adaptation law (11), and
spacecraft attitude dynamics and kinematics Eqs. (2) and (4).

In multiple model adaptive control, switching mechanism
is an essential partwhich determines active controller at every
instance based on somemeasured signals and identifiedmod-
els. The proposed switching mechanism selects the nearest
model–controller pair to the actual plant based on the follow-
ing criteria:

active controller index = argmin
i=1,2,...,N

∥∥qp − qi
∥∥
2 (29)
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Fig. 2 Block diagram of the
LEO satellite attitude simulator
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whereqp is the quaternionvector representation for the actual
attitude of the plant.

4 Simulation Results on a LEO Satellite
Simulator

This section explains the specification of the developed atti-
tude simulator for a typical LEO satellite which is used to
demonstrate the efficacy of the proposed control algorithm.

4.1 LEO Satellite Simulator

The block diagram of this simulator is shown in Fig. 2.

4.1.1 Coordinate Frames

To determine the position and attitude of a spacecraft in space
it is needed to define at least two reference frames, and more
are needed for convenience. Spacecraft body frame and an
inertial reference frame are necessary and an intermediate
reference frame such as orbit reference frame is used for
convenient transformation.

Fig. 3 Illustration of coordinate frames

(a) Spacecraft body frame: the origin of spacecraft body
frame is located at the center of mass of spacecraft and its
axes are a triad of orthogonal right-hand axes. In the case that
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Table 1 The parameters value
used in simulation

Parameter Value

Orbit parameters

Height 800 km

Inclination π/3 rad

Right ascension 0

Argument of perigee 0

Mean anomaly 0

Satellite actual inertia matrix Ip =
⎡
⎣ 300 50 20
50 110 0
20 0 800

⎤
⎦

Controller 1 Initial inertia matrix I1 =
⎡
⎣ 15 3 2
3 50 4
2 4 14

⎤
⎦

Controller 2 Initial inertia matrix I2 =
⎡
⎣ 250 30 20
30 90 4
20 4 500

⎤
⎦

Constant gains of main controller

k1 10

k2 10

k3 10

k4 12.5

k5 0.8

0 0.05 × eye(6)

Lead filter realization

A −30 × eye(4)

B 33 × eye(4)

Q 30 × eye(4)

C 16.5 × eye(4)

Initial quaternion (0, 0, 0, − 1)

Commanded quaternion (− 0.2448, − 0.1821, − 0.3676, − 0.8785)

Initial Euler angles (0, 0, 0) degrees

Commanded Euler angles (10, 30, 50) deg

Simulation step size 0.05 s

Solver Runge–Kutta

body frame axes coincide with principal moment of inertia
axes, spacecraft inertia matrix will be diagonal.

(b) Earth Centered Inertia (ECI) frame: a frame in which
Newton’s law of motion hold is called an inertial frame. For
engineering purposes, a frame with fixed direction relative
to the solar system can be considered as inertial frame. The
origin of this reference frame is located at the center of mass
of the earth and its X axis is in the direction of vernal equinox
vector and the Z axis coincides with the positive axis of the
rotation of earth. The equatorial plane is the X–Y plane of
this frame and the Y axis is defined such that it completes a
right-hand orthogonal triad with X and Y axis.

(c) Orbit reference frame: this reference frame is used as
an intermediate frame and its origin is located at the center of
mass of spacecraft. The Z axis points toward earth center of

mass from spacecraft center of mass (nadir direction), the X
axis is perpendicular to the Z axis in the orbital plane and in
the direction of spacecraft velocity. The Y axis completes a
right-hand orthogonal system. These three reference frames
are illustrated in Fig. 3.

4.1.2 Orbit Propagator

Since our focus is on attitude dynamics we develop a simple
circular Keplerian orbit propagator. Numerical propagation
of spacecraft orbit canbe carriedout using classicalKeplerian
elements or position and velocity vectors. Based on the two-
body problem and Newton’s universal law of gravitation, the
equation of motion of a Keplerian orbit can be written as 4
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Fig. 4 Quaternion vector vs time (s) for pure adaptive controller

d2r
dt2

= −μ
r
r3

(30)

where, μ = G (M + m) ≈ GM3×3 is the gravitational
parameter, M and m are earth and spacecraft mass respec-
tively and G is Newton’s universal gravitational constant.

4.1.3 Spacecraft Kinematics and Dynamics

Spacecraft kinematics and dynamics are implemented in sim-
ulator according to (2) and (4) described in Sect. 2. A point
that should be mentioned is about angular velocity transfor-
mation. As the Euler moment equation is written in body
frame the dynamics equation is in term of ωBI−B which is
the angular velocity of body frame with respect to inertial
frame expressed in body frame. While the kinematics equa-
tion is in termofωBR−B which is the angular velocity of body
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Fig. 5 Quaternion vs time (s) for multiple model adaptive controller
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Fig. 6 Euler angles step response for pure adaptive controller

frame with respect to the orbital reference frame expressed
in body frame and hence ωBI−B should be properly trans-
formed to ωBR−B . Let ω0 be orbital angular velocity, this
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Fig. 8 Active controller index in multiple model control

transformation is (see Ref. [3])

ωBR−B = ωBI−B − [ARB]
⎡
⎣0

−ω0

0

⎤
⎦ (31)

where, [ARB] is the direction cosinematrix which transforms
a vector in reference frame to body frame and can be com-
puted from the quaternion during simulation.

4.1.4 Disturbance Torques

There are various sources of disturbance torques acting on
spacecraft such as gravity gradient torque, solar pressure, and
residual dipole. In this simulator we consider gravity gradi-
ent due to its major influence on spacecraft dynamics. An
adequate approximation of gravity gradient torque is given
by Markley [4] as

τGG = 3μ

r3
n × (In) (32)

where n is a unit vector in direction of nadir expressed in
body frame which is in turn

n = [ARB]
⎡
⎣0
0
−1

⎤
⎦ (33)
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4.2 Multiple Model Adaptive Attitude Controller
Simulation

In this section, the proposed multiple model adaptive control
scheme is applied to the developed simulator. We consider
N = 2 which means we have two identification models. To
evaluate the performance of the proposed control scheme,
the problem of regulating the spacecraft attitude to a fixed
commanded attitude is investigated. Since Euler angles are
more intuitive, system response in terms of Euler angles is
also shown and thus appropriate transformation is used. The
values of parameters used in simulation are given in Table 1.

Simulation results for both, the pure adaptive control and
the multiple model adaptive control are shown in Figs. 4, 5,
6, 7 and 8. Figure 4 shows quaternion behavior for the pure
adaptive control and Fig. 5 shows that of multiple model con-
trol. Although in both cases the quaternion vector converges
to the commanded quaternion, the performance improvement
due to incorporating multiple model approach can be clearly
seen in Fig. 5.

Figure 8 shows the time histories of switching between
two controllers. For the proposed switching logic, switching
between controllers will not stop even after convergence to
the commanded quaternion. This may in part be because of
disturbance effect and hence one could invoke sort of feed-
forward terms in control law to avoid unwanted switching.
Modifying the switching logic by insertion of dwell time or
hysteresis is also possible.

Figure 9 depicts the convergence of the components of the
pseudo velocity to those of the actual angular velocity. For all
three components, the pseudo velocity component converges
to the actual value after a few seconds. As shown in Fig. 10,
adaptation of the inertia matrix converges to the final values
fast. However, since the persistent excitation (PE) condition
of the input signal is not met, the final converged values are
not the actual values of the components of the inertia matrix.
The input signal is also shown in Fig. 11.

5 Conclusion

In this work, the output feedback variant of the adaptive atti-
tude controller under angular velocity constraints proposed
in Ref. [20] was derived. This output feedback adaptive con-
troller was then considered as a main control law and its
transient response for the regulation problem was improved
significantly by applying the multiple model and switch-
ing approach to adaptive control. In particular, the multiple
model and switching approach was achieved by dividing the
parameter space of inertia matrix to smaller subspaces. A
compact LEO satellite attitude simulator was developed and
used for evaluation of the proposed control scheme. Future
works includes investigation of robustness of control law
(8) against bounded time variant external disturbances and
reconsidering the same problem taking into account actuator
saturation.
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